Advancing a Framework to Enable Characterization and Evaluation of Data Streams Useful for Biosurveillance
نویسندگان
چکیده
In recent years, biosurveillance has become the buzzword under which a diverse set of ideas and activities regarding detecting and mitigating biological threats are incorporated depending on context and perspective. Increasingly, biosurveillance practice has become global and interdisciplinary, requiring information and resources across public health, One Health, and biothreat domains. Even within the scope of infectious disease surveillance, multiple systems, data sources, and tools are used with varying and often unknown effectiveness. Evaluating the impact and utility of state-of-the-art biosurveillance is, in part, confounded by the complexity of the systems and the information derived from them. We present a novel approach conceptualizing biosurveillance from the perspective of the fundamental data streams that have been or could be used for biosurveillance and to systematically structure a framework that can be universally applicable for use in evaluating and understanding a wide range of biosurveillance activities. Moreover, the Biosurveillance Data Stream Framework and associated definitions are proposed as a starting point to facilitate the development of a standardized lexicon for biosurveillance and characterization of currently used and newly emerging data streams. Criteria for building the data stream framework were developed from an examination of the literature, analysis of information on operational infectious disease biosurveillance systems, and consultation with experts in the area of biosurveillance. To demonstrate utility, the framework and definitions were used as the basis for a schema of a relational database for biosurveillance resources and in the development and use of a decision support tool for data stream evaluation.
منابع مشابه
A Systematic Evaluation of Data Streams for Global Disease Surveillance
Introduction Living in a closely connected and highly mobile world presents many new mechanisms for rapid disease spread and in recent years, global disease surveillance has become a high priority. In addition, much like the contribution of non-traditional medicine to curing diseases, non-traditional data streams are being considered of value in disease surveillance. Los Alamos National Laborat...
متن کاملEvaluating Biosurveillance System Components using Multi-Criteria Decision Analysis
Introduction The evaluation of biosurveillance system components is a complex, multi-objective decision that requires consideration of a variety of factors. Multi-Criteria Decision Analysis provides a methodology to assist in the objective analysis of these types of evaluation by creating a mathematical model that can simulate decisions. This model can utilize many types of data, both quantitat...
متن کاملSelecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis
The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better...
متن کاملAdvancing Epidemic Prediction and Forecasting: A New US Government Initiative
Introduction The National Science and Technology Council, within the Executive Office of the President, established the Pandemic Prediction and Forecasting Science and Technology (PPFST) Working Group in 2013. The PPFST Working Group supports the US Predict the Next Pandemic Initiative, and serves as a forum to accelerate the development of federal infectious disease outbreak prediction and for...
متن کاملBiosurveillance Data Stream Framework: A Novel Approach to Characterization and Evaluation
and reproduction in any medium, provided the original work is properly cited.
متن کامل